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Abstract 
 This paper introduces a reinforcement-learning approach designed to converge towards 

the true Nash Equilibrium in multiagent finite games. Building upon Gao et al.'s model,[1] which 

utilized passivity-based controls and Q-learning for Nash Equilibrium determination, this paper 

addresses limitations observed in achieving only a logit Nash Equilibrium in monotone games. 

To rectify this, this paper proposes a modification by transitioning from Q-learning to P-RL and 

incorporating an additional layer of Heavy Anchor Dynamics. The inclusion of Heavy Anchor 

Dynamics feedback is crucial to prevent the P-RL model from cycling in monotone games, 

ensuring convergence towards the true Nash Equilibrium. Furthermore, this was completed in the 

discrete-time domain, and a new set of models that integrate both Heavy Anchor Dynamics and 

P-RL was introduced. All simulations have been completed in Python and plotted using the 

Matplotlib and Plotly libraries. 
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1. Introduction 
This investigation aims to explore the potential development of a reinforcement-learning 

(RL) scheme that converges to the true Nash Equilibrium (NE) in multiagent finite games. This 

study builds upon the 2021 paper by Bolin Gao and Lacra Pavel, which utilized a passivity-based 

approach and achieved convergence to a perturbed NE [1]. Their work on Q-learning research 

introduces a different RL scheme, P-RL [2]. Furthermore, research on Heavy Anchor Dynamics 

and Q-Learning with side-information proved that convergence to the true NE can be attained in 

monotone games [3] [4]. While Gao and Pavel’s model demonstrated convergence in games 

characterized by the monotonicity property of negative payoff vectors, the proposed approach in 

this paper aims to identify a solution in a discrete-time model with side-information, as most 

models are implemented in such time. 

  



2 
 

2. Literature Review 

2.1 Introduction 

This investigation ambitiously embarks on the mission of developing an advanced 

reinforcement-learning (RL) scheme aimed at achieving the authentic Nash Equilibrium (NE) in 

the complex landscape of multiagent finite games. Building upon the pioneering work of Gao 

and Pavel, this novel approach incorporates Heavy Anchor Dynamics and Q-Learning with Side-

information to assess the feasibility of attaining convergence to the true NE within a discrete-

time model. The quest for NE-seeking in non-cooperative games propels our purpose [3][4]. RL, 

with its adaptable nature and minimal informational requirements compared to traditional 

methods like fictitious play and gradient play, emerges as a potential solution. The overarching 

goal expands beyond mere convergence, delving into the unexplored realms of RL's applicability 

in scenarios marked by incomplete information. The purpose is dual-fold: extending Gao's model 

and proposing innovative RL approaches, with a distinct emphasis on convergence within 

discrete-time models, aligning with the practical implementation of most models. 

Exploring the basic concepts of Game Theory and Nash Equilibrium seeking, will deliver 

a base understanding of important notions to help move into advanced and specific concepts. 

Thereafter, we introduce four pivotal components: Passivity-Based Controls for NE Seeking, P-

RL & Q-Learning in Continuous Time, Heavy Anchor Dynamics, and Q-Learning with Side 

Information. The comprehensive roadmap extends from foundational concepts to detailed 

analyses of each critical component, providing readers with a holistic view of our pursuit for true 

NE convergence in the dynamic landscape of multiagent finite games. A few important 

definitions are also mentioned. 

2.2 Definitions 

Nash Equilibrium: The point in a non-cooperative game wherein players have no incentive to 

unilaterally deviate from their strategy. [5] 

Reinforcement Learning: An area of machine learning that focuses on rewarding/punishing 

desired/undesired behaviors to "teach" the agent an optimal policy. [6] 
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Continuous-Time System: A continuous-time system is a dynamical system where the input, 

output, and state variables are defined at every instant of time in a continuous manner. The 

system evolves smoothly and continuously over time. [7] 

Discrete-Time System: A discrete-time system is a dynamical system in which the input, 

output, and state variables are defined at distinct, separate time instances. The system evolves in 

discrete steps or intervals, with time progressing in a quantized manner. [8] 

2.3 The Motivation to use RL in NE-Seeking 

Nash Equilibrium-seeking is a challenging problem without a general solution for non-

cooperative games. Reinforcement learning (RL) in multiagent finite games, especially those 

with incomplete information, has gained interest due to its weak informational requirements.  

While RL shows potential for solving games that other methods cannot, challenges 

remain. Prior research mainly focused on convergence results in potential games and two-player 

zero-sum games. Gao and Pavel’s research addressed this gap, proposing that passivity-based 

control theory could make existing RL schemes converge in N-player monotone and 

hypomonotone games.[1] 

2.4 Game Theory  

Game Theory, a branch of applied mathematics, provides a robust framework for 

analyzing situations characterized by interdependent decisions among multiple parties, known as 

players. The essence of Game Theory lies in unraveling the strategic intricacies that unfold when 

players formulate decisions, considering the potential moves of others. Originating from the 

collaborative efforts of John von Neumann, a Hungarian-born American mathematician, and 

Oskar Morgenstern, a German-born American economist, Game Theory was initially 

conceptualized to address challenges in economics. Their seminal work, "The Theory of Games 

and Economic Behavior" [9], argued for the inadequacy of traditional physical sciences and 

mathematics in capturing the strategic dynamics inherent in economic interactions. Instead, they 

proposed Game Theory as a novel mathematical approach suited to the nuanced decision-making 

processes involved in economic activities. [10] 
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Game Theory encompasses scenarios where players may have similar, opposed, or mixed 

interests, leading to a diverse array of potential outcomes. The strategic considerations in 

decision-making, as opposed to pure chance, set Game Theory apart from classical probability 

theory. Its applications extend far beyond traditional parlour games, permeating various fields 

such as politics, business, pricing strategies, voting dynamics, jury selection, and even ecological 

studies of animal and plant behaviors. The theory aids in predicting and understanding the 

formation of political coalitions, determining optimal pricing strategies in competitive markets, 

assessing the power dynamics of voters or voter blocs, and optimizing decisions related to 

manufacturing plant locations. [10] 

The versatility of Game Theory is evident in its application to challenges ranging from 

legal disputes about voting systems to the optimal placement of manufacturing plants. It has been 

instrumental in shedding light on the dynamics of strategic interactions in various contexts, 

offering valuable insights into decision-making processes influenced by complex 

interdependencies. [10] 

2.5 NE-Seeking 

At the core of Game Theory lies the concept of Nash Equilibrium (NE), a pivotal 

outcome in noncooperative games for multiple players. Coined after the eminent American 

mathematician John Nash, the NE represents a state where no player can enhance their expected 

outcome by unilaterally altering their strategy. This foundational idea serves as a cornerstone in 

Game Theory, especially in N-player noncooperative games, earning Nash the 1994 Nobel Prize 

in Economics for his ground-breaking contributions [11] [12] [13]. 

Crucial to understanding NE-seeking is the classification of games as noncooperative, 

meaning players lack mechanisms for binding agreements. A classic example is the prisoner's 

dilemma, where two accused individuals face the dilemma of confessing or remaining silent 

without any enforceable agreement. The absence of external enforcement renders the game 

noncooperative, emphasizing the strategic nature of decisions where betrayal incurs no penalty. 

[14] 

Understanding when and where this state occurs, along with predicting player payoffs at 

that point, is crucial in competitive Game Theory. While algorithms like fictitious play and 

gradient play have been devised to find the NE, they are limited by informational requirements. 
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RL algorithms, explored in detail, have gained prominence due to their applicability in games 

with limited information, where traditional algorithms fall short. 

2.6 Passivity-Based Controls for NE Seeking 

The scrutiny of Reinforcement Learning (RL) within the realm of passivity-based control 

theory unfolds a series of substantial contributions and breakthroughs, elucidating intricate facets 

of convergence in multiagent finite games. The cardinal contributions articulated in the study can 

be expounded upon to unveil a more nuanced understanding of the advancements in RL. 

The utilization of passivity-based control theory is pivotal in establishing the 

convergence of an existing RL scheme. The study illuminates that this convergence is not limited 

to potential games but instead encompasses a broader spectrum, specifically extending to N-

player monotone and hypomonotone games. The significance of this extension, lies in the 

broadened applicability of RL in diverse game scenarios, transcending previous constraints and 

providing a more encompassing solution for convergence challenges. [1] 

Expanding the horizon of passivity-based control, this research introduces the concept of 

higher-order learning dynamics, ushering in a paradigm shift in the design of RL extensions. By 

delving into the integration of higher-order dynamics through auxiliary states, this study 

underscores the potential advantages in fostering convergence for expansive classes of games, 

effectively surmounting the limitations posed by conventional first-order schemes. [1] 

As depicted in Figure 1, there are limitations in convergence with passivity-based 

approaches that still need to be addressed, specifically with monotone games. The Anti-

coordination is a benchmark strategic game which cannot be resolved via traditional passivity-

based approaches and requires further research to identify a solution. 

This study further extends its purview to discrete-time reinforcement learning, 

particularly focusing on a scheme with noisy updates grounded in the stochastic-approximation 

method. The revelations encapsulated in Theorem 3 underscore the adaptability and convergence 

capabilities of passivity-based control in discrete-time settings. This extension enhances the 
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practicality and versatility of RL algorithms, catering to real-world scenarios where continuous-

time implementations may be impractical, thereby broadening the scope of RL applications. [1] 

In essence, this deep dive into passivity-based control theory within the ambit of RL not 

only broadens the scope of convergence but also pioneers a framework for the design of higher-

order learning dynamics. These developments offer a sophisticated and nuanced comprehension 

of RL's potential in navigating complex decision spaces involving multiple agents. The robust 

theoretical foundations, fortified by meticulous proofs and numerical results, contribute 

substantively to the scientific dialogue, paving the way for more resilient and adaptable RL 

applications across diverse scenarios and challenges.[1] 

 

Figure 1. The convergence of the 123 Anticoordination game using the EXP-D-RL approach. (a) epsilon = 1. (b) epsilon = 0.1. 

Taken from [1] 

2.7 P-RL & Q-Learning in Continuous Time 

Understanding the importance of P-RL and Q-Learning methods in continuous time is 

vital. There are two interconnected models represented by equations (1) and (2) that are vital to 

understanding these concepts. These models are visualized in Figures 2(a) and 2(b), with the key 

difference lying in the configuration of the forward path. Figure 2(a) involves a bank of 

integrators, while Figure 2(b) incorporates a bank of low-pass filters.  

Further analysis is carried out to leverage OSEIP payoff the asymptotic stability of the Q-

learning closed-loop model (equation 2) shown in Figure 2(b). Gao & Pavel explore this idea in 

their 2022 paper. The discussion emphasizes the generality of the results, asserting stability for 

any epsilon greater than zero in any N-player monotone game, where the monotonicity of the 

negative payoff game mapping (-U) plays a crucial role. Additionally, the passage explores the 

limitations of the P-RL model in Figure 2(a), where only mere stability is achievable when -U is 
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monotone, highlighting the importance of passivity techniques to extend convergence results to a 

broader class of hypomonotone games and designing higher-order Q-learning dynamics. The 

goal is to strike a balance between the passivity characteristics on the feedback and feedforward 

paths, ensuring convergence to an approximated Nash Equilibrium for any epsilon greater than 

zero. 

𝑃: {
𝑧̇ = 𝑈𝑖(𝑥) − 𝑧,   𝑧(0) ∈ ℝ

𝑛

𝑥 = 𝜎𝜖(𝑧)
                              𝑃: {

𝑧̇ = 𝑈𝑖(𝑥),   𝑧(0) ∈ ℝ
𝑛

𝑥 = 𝜎𝜖(𝑧)
 

                               Equation 1. Q-Learning Feeback Model                Equation 2. P-RL Feeback Model 

 

Figure 2. a) Payoff-based reinforcement learning (P-RL) and (b) Q-learning, represented as a feedback interconnected system 

(R,U), where U on the feedback path is the payoff game mapping. On the forward path, R is the composition between (a) a bank 

of integrators (P-RL) or (b) a bank of low-pass filters (Q-learning) and the soft-max mapping. Taken from [2] 

2.8 Heavy Anchor Dynamics 

Gao and Pavel’s 2022 paper introduces an innovative solution, "Heavy Anchor," which 

stands out as a passivity-based modification of the conventional gradient-play dynamics. The 

primary objective of Heavy Anchor is to overcome the strict monotonicity constraints of the 

pseudo-gradient, which is imperative for gradient-play dynamics. This paper rigorously proves 

that Heavy Anchor achieves not only a relaxation of strict monotonicity but also ensures exact 

asymptotic convergence in merely monotone regimes, a pivotal contribution that extends the 

reach of convergence results beyond conventional boundaries. [3] 

The study takes a bold step forward by extending the applicability of Heavy Anchor to 

scenarios where players possess only partial information about their opponents' decisions. In this 

setting, each player maintains a local decision variable and an auxiliary state estimate, fostering a 

decentralized learning approach. The modification of Heavy Anchor through distributed 
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Laplacian feedback becomes instrumental in leveraging equilibrium-independent passivity 

properties to attain convergence to a Nash Equilibrium, particularly in hypomonotone regimes. 

These findings mark a significant leap in the literature. Figure 3 and Figure 4 show the 

integration of Heavy Anchor in a monotone gradient field.  [3] 

                                      

Figure 3. Gradient Vector Field. Taken from [3] Figure 4.                 Decision trajectories under Heavy Anchor. Taken from [3] 

The contributions of this paper are multifaceted. First and foremost, it introduces and 

rigorously analyzes the Heavy Anchor algorithm, showcasing its prowess in ensuring exact 

convergence to a Nash Equilibrium for positive parameter values in the full-decision information 

setting. Moreover, the extension of Heavy Anchor to hypomonotone games, under specified 

conditions, underscores its adaptability to more complex scenarios. In the partial-decision 

information setting, this paper achieves a notable milestone by proving convergence for 

monotone extended pseudo-gradient or hypomonotone and inverse Lipschitz pseudo-gradient, 

filling a significant gap in the existing literature. The exploration of Heavy Anchor's relationship 

to optimization dynamics, its similarity to approaches used in chaotic systems stabilization, and 

its connections to second-order dynamics in the optimization realm further enrich the scientific 

discourse. Overall, Heavy Anchor emerges as a versatile and powerful methodology, offering 

novel insights and solutions to long-standing challenges in distributed Nash Equilibrium 

seeking.[3] 

2.9 Q-Learning with Side Information 

This paper introduces a discrete-time Nash Equilibrium-seeking reinforcement learning 

scheme designed to exploit side information, ultimately achieving convergence in a specific class 

of finite games characterized by negative monotonicity properties in their utility. Notably, the 
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literature review emphasizes the limited research on reinforcement learning that effectively 

utilizes side information despite its potential practical applications. In response to this gap, the 

study explores various Q-Learning techniques, including FLQL, IQL, and QLSI 1-3, all derived 

from central equations (Figure 5) but featuring distinct simplifications based on initial conditions 

and assumptions that converge at different rates as depicted in Figure 6. [4] 

 

Figure 5. Q-learning with Side Information (QLSI) updating functions. Taken from [4] 

Through numerical simulations of representative games, the paper showcases that 

exploiting more side information leads to a faster convergence rate to a Nash Equilibrium, 

highlighting the practical significance of incorporating side information in reinforcement 

learning for finite games. [4] 

 

Figure 6. Distance from the Nash Equilibrium as a function of the iteration obtained with different algorithms for the standard 

RPS game. Taken from [4] 
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3. Methods 

The methodology for integrating Q-Learning and Payoff-based (P-RL) into a unified 

model involves three main phases: Assessment, Game, and Choice. Each phase transitions 

between three key vectors: 𝑥, 𝑧, and 𝜋, representing different aspects of the learning process.  

 

Figure 7. Algorithm map of Q-learning and P-RL 

The Choice phase utilizes the SoftMax function applied to the 𝑧 vector to generate the 

mixed strategy vector. In the Game phase, the dot product between the payoff matrix A and the 

vector 𝑥 is calculated. The Assessment phase, in continuous time, involves passing through a set 

of high-pass filters. However, in discrete-time, the absence of high-pass filters necessitates 

adaptation. 

(𝑎)  𝜎𝑖(𝑧𝑖) ≔ (
1

Σ𝑗∈𝐴𝑗 exp (
1
𝜖
) 𝑧𝑖𝑗

)× [exp ((
1

𝜖
) 𝑧𝑖1)…exp((

1

𝜖
) 𝑧𝑖𝑛)]

𝑇

= 𝑥𝑖 

(𝑏)  2. 𝑥𝑖
𝑇 ⋅ 𝐴 = 𝜋𝑖 

Equation 3. (a) SoftMax function on vector z. (b) Game Phase on vector x. 

To address this, equations from Gao and Pavel’s paper [2] are employed to update the 

vectors in the Assessment phase for both Q-Learning and P-RL models. In transitioning to 

discrete-time, adjustments are made to incorporate a time step, 𝑘, and the introduction of the 

alpha function, defined as 
1

𝑘+1
. 

(𝑎)  𝑧𝑖(𝑘 + 1) = 𝑧𝑖(𝑘) + 𝛼𝑖(𝑘)𝜋𝑖(𝑘)𝑑𝑖𝑎𝑔 (
1

𝑥𝑖(𝑘)
) 

(𝑏) 𝑧𝑖(𝑘 + 1) = 𝑧𝑖(𝑘) + 𝛼𝑖(𝑘)𝑑𝑖𝑎𝑔 (
𝜋𝑖(𝑘) − 𝑧𝑖(𝑘)

𝑥𝑖(𝑘)
) 
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Equation 4. Assessment Phase update function in discrete-time taken from [2] for (a) P-RL model (b) Q-Learning model 

Additionally, the Heavy Anchor Dynamics, introduced in continuous time with equations 

from Gao and Pavel’s paper  [2], are modified for discrete-time. This involves introducing a new 

auxiliary variable, such as beta, alpha, and a vector r, updated iteratively.  

 

Equation 5. Heavy Anchor Dynamics model 

The equations are further modified to integrate the P-RL model into the Assessment 

phase alongside the Heavy Anchor Dynamics. Notably, variable names are changed to 𝑧 to allow 

direct interaction between the heavy anchor layer and the Assessment phase. The projection 

phase is eliminated, and the 𝑟 component is integrated into the revised equations. 

𝑃:

{
 
 

 
 𝑧𝑖(𝑘 + 1) = (−(𝑥𝑖(𝑘) ⋅ 𝐴) − 𝛽(𝑧𝑖(𝑘) − 𝑟𝑖(𝑘)) + 𝜋𝑖(𝑘)𝑑𝑖𝑎𝑔 (

1

𝑥𝑖(𝑘)
))𝛼(𝑘) + 𝑧(𝑘)

𝑟𝑖(𝑘 + 1) = (𝛼(𝑥𝑖(𝑘) − 𝑟𝑖(𝑘)))𝛼(𝑘) + 𝑟(𝑘)

𝜎(𝑧𝑖(𝑘)) = 𝑥𝑖(𝑘)

 

Equation 6. Integration of Heavy Anchor Dynamics with P-RL model in discrete-time 

This final proposed method aims to effectively combine P-RL with Heavy Anchor 

Dynamics, leveraging Q-side learning for enhanced performance in reinforcement learning tasks. 

By adapting the methodology to discrete-time while maintaining the key components of the 

original model, it ensures applicability to real-world scenarios where discrete-time processing is 

often more practical and efficient, thus providing a comprehensive solution for complex 

reinforcement learning problems. 

 

Figure 8. Algorithm map of P-RL with Heavy Anchor Dynamics 
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4. Results and Discussion  

4.1 Game 1 RPS 

We first examine the standard game of rock-paper-scissors. The payoff matrix for this 

game is denoted as: 

𝐴 = [
0 −1 1
1 0 −1
−1 1 0

] 

To ensure a zero-sum game, 𝐴𝑇 = 𝐵 is used for this setup. We denote 𝐵, to be the payoff 

matrix used by the second player in the game for all games, it can be seen in equation [4] that A 

is used however this matrix changes depending on which player is being updated. The Nash 

Equilibrium of this game occurs at the mixed strategy (
1

3
,
1

3
,
1

3
), which is considered the optimal 

strategy. 

Here we can observe the convergence of the Q-Learning models in Gao and Pavel’s 

paper compared to the discrete-time Q-learning model. The Nash Equilibrium in the Q-Learning 

model converges to the correct one. 

 

Figure 9. Mixed Strategy Trajectory for a simple RPS Game. (left) taken from [2] with blue line being P-RL and Q-Learning in 

red line (right) Q-Learning replicated in discrete-time  
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However, upon evaluating the models with P-RL and P-RL with Heavy Anchor 

Dynamics models, we notice that the P-RL game does not converge, while the P-RL with Heavy 

Anchor Dynamics does. The trajectory for the P-RL model resembles the one presented in Gao 

and Pavel’s paper [2], indicating correct implementation. 

 

Figure 10. Mixed Strategy Trajectory for The RPS Game. (left) P-RL model (right) P-RL with Heavy Anchor Dynamics model 

both in discrete-time 

The parameters used for P-RL with Heavy Anchor Dynamics include β=1, α=1, and ϵ=1. 

These parameters enable convergence in discrete-time but not in continuous time, a distinction 

that must be considered. Each dot on the graph represents a plot in a timestep; there are a lesser 

amount of time steps to convergence on the Q-Learning model than the P-RL with Heavy 

Anchor Dynamics model. However, this may not always be true for all games. 

4.2 Game 2 Anti-coordination 

 We now examine the Anti-coordination game. The payoff matrix for this game is denoted 

as: 

𝐴 = [
−1 0 0
0 −2 0
0 0 −3

] 

 This game is not zero-sum, and the Q-Learning algorithm converges consistently to a logit 

Nash Equilibrium at (0.40,0.32,0.27). The payoff matrix for player B is, 𝐴𝑇 = 𝐵 and the true 



14 
 

Nash Equilibrium of this game occurs at the mixed strategy (
6

11
,
3

11
,
2

11
),  which is considered the 

optimal strategy. 

 

 Here, we can observe the convergence of the Q-Learning models in Gao et al.’s paper [1] 

compared to the discrete-time Q-learning model. The Nash Equilibrium in the Q-Learning model 

converges to the incorrect Nash Equilibrium as expected.  

 

 

Figure 11. Mixed Strategy Trajectory for the Anti-Coordination Game. (left) Taken from Gao et. al.'s paper, with the blue line 

being EXP-D-RL and the red line being H-EXP-D-RL. (right) Plot recreated in discrete-time 

 However, upon evaluating the models with P-RL and P-RL with Heavy Anchor Dynamics 

models, we notice that the P-RL game does not converge, while the P-RL with Heavy Anchor 

Dynamics does.  
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Figure 12. Mixed Strategy Trajectory for The Anti-Coordination Game. (left) P-RL model (right) P-RL with Heavy Anchor 

Dynamics model both in discrete-time 

 

 The parameters used for P-RL with Heavy Anchor Dynamics include 𝛽 =  2.5, 𝛼 =  5, 

and  𝜖 = 1.  

 

4.3 Game 3 Matching Pennies 

 Next, we examine the Matching Pennies game. The payoff matrix for this game is denoted 

as: 

𝐴 =  [
1 −1
−1 1

] 

 This game is zero-sum, the payoff matrix for player B is, 𝐴 = −𝐵 and the Nash 

Equilibrium of this game occurs at the mixed strategy (
1

2
,
1

2
),  which is considered the optimal 

strategy. Here we can observe the convergence of the Q-Learning models in Gao and Pavel’s 

paper [1] compared to the convergence of the P-RL model and the P-RL with Heavy Anchor 

Dynamics model. Since the game is zero-sum, the P-RL model does not converge while the P-

RL with Heavy Anchor Dynamics does, that too at a very fast rate. 
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Figure 13. Mixed Strategy Trajectory for 2-player MP game taken from Gao et. al.'s paper, with the dashed lines being EXP-D-

RL and the solid lines being H-EXP-D-RL 

 

Figure 14. Mixed Strategy Trajectory for 2-player MP Game with P-RL and P-RL with Heavy Anchor Dynamics convergence 

4.4 Game 4 Shapley 

The Shapley game is very similar to the rock paper scissors game however is not 

considered a zero-sum game due to the payoff matrix. The payoff matrix for this game is denoted 

as: 

𝐴 = [
0 1 0
0 0 1
1 0 0

] 

𝐴𝑇 = 𝐵 is used for this setup. The Nash Equilibrium of this game occurs at the mixed strategy 

(
1

3
,
1

3
,
1

3
), which is considered the optimal strategy. 
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Here we can observe the convergence of the Q-Learning models in Gao and Pavel’s 

paper [1] compared to the discrete-time Q-learning model. The Nash Equilibrium in the Q-

Learning model converges to the correct one. 

 

Figure 15. Mixed Strategy Trajectory for The Shapley Game. (left) taken from Gao et. al.'s paper, with the blue line being EXP-

D-RL and the red line being H-EXP-D-RL (right) Plot recreated in discrete-time 

However, upon evaluating the models with P-RL and P-RL with Heavy Anchor 

Dynamics models, we notice that the P-RL game does converge at a slower rate than the P-RL 

with Heavy Anchor Dynamics.  

 

Figure 16. Mixed Strategy Trajectory for The Shapley Game. (left) P-RL model (right) P-RL with Heavy Anchor Dynamics 

model both in discrete-time 
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The parameters used for P-RL with Heavy Anchor Dynamics include 𝛽 = 0.1, 𝛼 = 2, and 𝜖 = 1. 

These parameters enable convergence in discrete-time but not in continuous time. 

4.5 Game 5 Modified RPS 

Finally, we examine a modified version of the standard game of rock-paper-scissors. The 

payoff matrix for this game is denoted as: 

𝐴 = [
0 −1 3
2 0 −1
−1 3 0

] 

This game is considered unstable due to the positive values in the payoff matrix which 

are greater than 1 and inconsistent. This makes this strategically different from the regular rock, 

paper, scissors game. The Nash Equilibrium of this game occurs at the mixed 

strategy (0.40625,0.3125,0.28125). which is considered the optimal strategy. 

Here, we can observe the convergence of the Q-Learning models in Gao and Pavel’s 

paper compared to the discrete-time Q-learning model. The Nash Equilibrium in the Q-Learning 

model converges to the incorrect Nash Equilibrium as expected. 

 

Figure 17. Mixed Strategy Trajectory for a Modified RPS Game. (left) taken from Gao et. al.'s paper, with the blue line being 

EXP-D-RL and the red line being H-EXP-D-RL (right) Plot recreated in discrete-time 
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However, upon evaluating the models with P-RL and P-RL with Heavy Anchor 

Dynamics models, we notice that the P-RL game does not converge, while the P-RL with Heavy 

Anchor Dynamics does.  

 

Figure 18. Mixed Strategy Trajectory for a Modified RPS Game. (left) P-RL model (right) P-RL with Heavy Anchor Dynamics 

model both in discrete-time 

The parameters used for P-RL with Heavy Anchor Dynamics include β=0.5, α=0.5, and ϵ=1. 

These parameters enable convergence in discrete-time but not in continuous time, a distinction 

that must be considered. 
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5. Conclusion 

This study introduced a modified version of the passivity-based method for identifying the Nash 

Equilibrium (NE) of a game, building upon the approach presented in a prior work by Gao and 

Pavel. While Gao and Pavel utilized Q-learning to reach a logit NE, this research adapted the 

model to employ P-RL instead. Additionally, this study introduced Heavy Anchor Dynamics on 

the feedback path to facilitate convergence to the true NE, particularly in monotone games. The 

findings were demonstrated using games outlined in Gao and Pavel’s paper. Further research can 

explore the optimization of hyperparameters tailored to specific games, as the P-RL with Heavy 

Anchor Dynamics model involves distinct parameters for each game. Integrating this 

optimization process into the Nash Equilibrium seeking stages could be a valuable extension. 
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